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OPTIMAL-ORDER ERROR ESTIMATES FOR THE FINITE ELEMENT 
APPROXIMATION OF THE SOLUTION OF A NONCONVEX 

VARIATIONAL PROBLEM 

CHARLES COLLINS AND MITCHELL LUSKIN 

ABSTRACT. Nonconvex variational problems arise in models for the equilibria 
of crystals and other ordered materials. The solution of these variational prob- 
lems must be described in terms of a microstructure rather than in terms of a 
deformation. Moreover, the numerical approximation of the deformation gra- 
dient often does not converge strongly as the mesh is refined. Nevertheless, the 
probability distribution of the deformation gradients near each material point 
does converge. Recently we introduced a metric to analyze this convergence. In 
this paper, we give an optimal-order error estimate for the convergence of the 
deformation gradient in a norm which is stronger than the metric used earlier. 

1. INTRODUCTION 

Nonconvex variational problems often arise in the modeling of the equilibria 
of crystals or other ordered states [2-9], [11-20]. For instance, the free energy 
for a solid crystal which has symmetry-related (martensitic) variants will have 
multiple, distinct energy wells. These variational problems may fail to attain 
a minimum value for any admissible deformation. Rather, the deformation 
gradients of minimizing sequences can have oscillations which do not converge 
strongly enough to evaluate nonlinear integrals of the deformation gradient such 
as the bulk energy functional. Nevertheless, the solution to these variational 
problems can be described in terms of an appropriate mathematical description 
of microstructure such as the Young measure [2-5], [15-20]. 

A continuum theory to describe the equilibria of crystals such as CuZn, 
CuAlNi, NiAl, and InTl which have symmetry-related variants has been recently 
developed [2-9], [11-20]. A corresponding theory of microstructure using the 
concept of the Young measure, or parametrized measure, has also been recently 
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developed to describe solutions to the variational problems given by the above 
continuum theory [2-5], [15-20]. This theory of microstructure gives a calculus 
for the computation of macroscopic properties of the crystals. 

We have reported computational results for two- and three-dimensional mod- 
els which give oscillations in the gradient on the scale of the mesh [7-9]. These 
oscillations do not converge strongly in any LP space, even locally, as the mesh 
is refined. However, the probability distribution of the deformation gradients 
near each material point does converge to a Young measure (or parametrized 
measure). We introduced a metric to analyze this convergence in [6], and we 
obtained a 0(h 1/4) convergence rate in this metric for a one-dimensional model 
problem by obtaining error estimates for the probability distribution of the de- 
formation gradient near each point. In this paper, we utilize some new analytic 
methods to obtain an optimal-order 0(h) error estimate for the deformation 
gradient in a norm with a stronger topology than the metric in [6] as well as 
other improved estimates. 

We define the mathematical problem and the norm in ?2, and we give the 
main results in that section. In ?3 we prove the main results for problems with 
unconstrained boundary conditions. We give the extension of these results to 
the Dirichlet problem in ?4. The optimality of the order of the error estimates 
is given in ?5. 

2. CONVERGENCE OF THE DEFORMATION GRADIENT 

We denote by LP for 1 < p < oc with norm IV ILI the usual space of 
Lebesgue measurable functions [21] on I _ (0, 1) such that 

- 1 ~ ~~~~ I /p 

IVILP- IV(X)IP dx] <00 forlp<oo 

and 
IV IL? =ess sup Iv (x) I < oc. 

xEI 

We then denote the Sobolev space Hl by [1, p. 44] 
1 = 2 2 H ={IVEL :v EL }. 

The energy density q(s) for our model of a one-dimensional crystal satisfies 

(2.1) Al mins(s - SL)2, (s _ SU)2I < 0(s) < ?2(IS + 1)2 for all s E Rt 

q(SL ) = 0(su) = 0 , 

where Al and )2 are material constants, s is the linear strain, and sL and su 
with SL < SU represent the transformation strains for the martensitic variants. 
We note that by Lemma 2 it follows that the energy density need be defined (and 
satisfy) (2.1) only in a neighborhood of {SL, s } . A derivation of the energy 
density (2.1) from a three-dimensional physical model with one-dimensional 
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symmetry is given in [2]. We model the bulk energy of a martensitic one- 
dimensional crystal [2] by 

(2.2) ?(V) = j [$(v'(y)) + (v(y) _ f(y)) 21 dy, 

where v(y) is a scalar-valued displacement and 

f(y) = Yy+b fory eI 

for Y satisfying SL < 5 < Su . The functional F (v) is well-defined for v E H1. 
It is well known (see Lemma 1 below, for instance) that 

inf F (v) = 0, 
vEH' 

but that there does not exist u E H1 such that F(u) = 0. (To see this, assume 
that F(u) = O. Since 0 (u(x)-f(X))2 dx = O, we have that u(x) = f(x) a.e. 

Thus, q(u') = q(f') = 0(5) > 0. So, fo I$(u'(x)) dx > 0. This contradicts the 
assumption that F(u) = 0.) 

We shall give an optimal-order error analysis for the minimization of the 
functional F over finite element spaces, Zh . To define h , let the mesh length 
h = 1/M for some M E N; let the vertex points x = ih for i = O, ..., M; 
and let the subintervals Ii = (xi-,, xi) for i = 1, ..., M. The finite element 
space Ah is defined to be the space of piecewise linear, continuous functions 

Xh-{VE C(I: vlIis linear for i = 1, ..,Ml. 

The approximate solutions Uh E fh satisfy 

(2.3) (Uh)= =mi n (Vh> )Eh . 
Vh E-Or 

The following lemma was proven in [6]. For completeness, we give a more 
elementary proof in ?3. 

Lemma 1. The energy Eh converges to 0 at the rate given by 

Eh (Su- SL)2h 
Eh< ~ 4 

However, u' (x) does not converge as h -O 0 in any L' space, even locally. 
In [6], it was shown that u' (x) and nonlinear functions of u' (x) converge 
weakly, though. We introduced a metric for this convergence in [6], and we 
showed that the convergence rate was 0(h 1/4). In this paper, we give a proof 
that the convergence rate is 0(h) in a norm with a stronger topology than the 
metric in [6] and we show that this convergence rate is optimal. 

Before we define the norm for the convergence of uh (x) we need to recall 
that we proved in [6] that u' (x) oscillates about a small neighborhood of SL 
and suI More precisely, we proved a variant of the following lemma in [6] 
which we also review in ?3. 
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Lemma 2. The approximate strain u* (x) satisfies the bound 

(2.4) max min{(u (x) - s2' (u (x) - s (< sL)h 
XEI h L h U) 4)L 

For 3 E JR and a > 0 denote the closed ball of radius a at 3 by 

a (AS) = {s : 5-a < s < 5 + a } 

and denote the closed neighborhood X, of {SL, Su) by 

X/f = A, (SL) U Ra (SU) . 

It follows from Lemma 2 that if h < 4a 21 /(sA - s9, then 

uI(x)) E forxeI. 

Equivalently, 
uI(x) E Il'/2(s4-s)/2(S i/2 for x E I. 

Our first main theorem states that the approximate strains, uh (x), are locally 
in the state sL with probability 

(2.5) y = - 
u- SL 

and are locally in the state Su with probability 1 - y = ( - SL) / (SU - SL) . In 
the jargon of the calculus of variations, the measure 

(2.6) ' - 'S+(Y)SU for x < 1, 

where 53 is the Dirac delta function with unit mass concentrated at 3 for 
S = SL L SU, is the unique Young measure associated with minimizing (2.2). 

We define the Sobolev space 2 to be the space of functions F(x, s): I x 
X, ,J11R such that 

(2.7) aF E L2JI L () 

and 

[F(xsu) -F(x, SL)] iL'(I) 

with norm (which depends on a > 0) 

JFHgr= [j s (X, A dx l + IF(x,s)Idsdx 

+ lF(Osu)-F(O, SL)I + 
A 

[F(x,Su)-F(x, SL)] dx. 

We will prove the following theorem. 



NONCONVEX VARIATIONAL PROBLEMS 625 

Theorem 1. For h < min{4)1, 4a2)Ll(sU - SL)2} and F E %' we have the 
estimate 

11 [F(x, u4(x)) - yF(x, sL)- (1-y)F(x Su)] dx 

(2.8) ? [(s (Su L) + 2/2 +4] IIFIIrh. 

We note that the thermodynamic properties of materials depend nonlinearly 
on the strain s. Theorem 1 shows that even though uh (x) -+ f(x) uniformly 
as h -- 0 (see Lemma 5), the material property described by the microscopic 
density F(y, s) has the macroscopic density (weak limit) 

yF(x, SL) + (1 - y)F(x, su) 

for the minimizing microstructure for the energy (2.2). 
To estimate the rate of convergence of u (x) we define the operator norm 

on the dual %7* of 2r by 

(2.9) IILIIr. = sup I(L F)I 
F E 7 IIFIIr 

for L E %*'. For h < 4a2)1 /2(s -sL)2, we can identify with uh the functional 
E %7* defined by 

(L, F) 101 F(x, u*) dx, 

and we identify with v- 5 + (1 - 2')'5~ the functional Lv E %7* defined by 

(L F)-F) [yF(x, SL) + 0- y)F(x, su)] dx. 

We then have the following theorem which is a direct consequence of (2.8). 

Theorem 2. For h < min{4)1, 4ca2l/(sU - sL)2} we have that 

(2.10) IIL -L [ jL) + 1 + 4] h. 

We also have that 

(Lu;, F) < IIFIIL'(I, C(X)) for F E L1 (I, C(Xa)). 

Thus, LUI is uniformly bounded in the operator norm (with norm 1) in the 

dual of L1 (I, C(At>)). Since %7 is dense in L1(I, C(IJK)), the above result 
implies that L / -) L, as h -- 0 in the weak*-topology of L1 (I, C(XY)*. It 
is known [10, 22] that 

L1 * . (X L = (I . C(Xa)*) = L??(I . M(Xa)) 



626 CHARLES COLLINS AND MITCHELL LUSKIN 

where M(^Jk) is the space of real Borel measures on .A with bounded varia- 
tion. 

Results similar to those described above are given in ?4 for the Dirichlet 
problem to minimize 8(v) over 7 where 

7/- {v E H': v(O) = f(O) and v(l) = f(l) }. 

We note that the variational problem 

(2.11) inf j (v)dy 

may have many solutions, both in the sense that the limit of the displacements 
v (x) of a minimizing sequence need not be unique and in the sense that the 
possible Young measure for the strains v'(x) need not be unique. However, the 
simplest limit displacement in this case is affine and the unconstrained problem 

(2.12) inf F (v) 
vEH' 

has this as its unique limit displacement. Moreover, in our present situation, 
the Young measure so generated is also unique. Since the multidimensional 
Dirichlet problem corresponding to (2.11) gives a unique Young measure for 
appropriate affine boundary conditions [4], we utilize the term 

(2.13) | V ((y) -f(y)) 2dy 

in the definition of F(v) to select a unique Young measure analogous to the 
selection of a unique Young measure for multidimensional problems by appro- 
priate Dirichlet boundary conditions. Thus, we consider (2.2) in place of the 
more traditional variational integral. A mechanical interpretation of the term 
(2.13) can be obtained from a model of a thin crystal plate glued to a rigid 
substrate [2]. 

3. ERROR ESTIMATES FOR THE DEFORMATION GRADIENT 

We can assume in the following without loss of generality that 

f(y) o 

and 

SL < 0 <Su. 

To see this, note that Vh (X) + f(x) E Ah if Vh E Ah and that 

f= [(v'(y) + Y) + v(y)2 91(v + f) = +) ] dy. 

Further, q!(s + Y) satisfies (2.1) with SL replaced by SL + T and su replaced by 

Su + T if +(s) satisfies (2.1). We first give a simplified proof of Lemma 1 [6]. 
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Proof of Lemma 1. Define vh(X) E Ah by Vh(O) = 0 and for k = 0..., 
M- 1, 

vh(xk+1) = I Vh(Xk) + hsL if IVh(Xk) + hsLI < lVh(Xk) + hsu I, 

Vh (xk) + hsu if IVh(Xk)+ hSLI > lVh(Xk) + hsuI. 

Since v'(x) = sL or v'(x) = s for x E I we have that q(v4(x)) _ 0. 
Next, we shall show that 

Vh(X) < (Su - SL)h/2 for x E I. 

Suppose there were a smallest positive integer P such that 

(3.1) Vh (XP) > (SU - SL)h/2. 

Since Vh (Xp) > Vh (Xp1 ), it follows from the definition of vh (x) above that 

Vh(XP) = Vh(XP i) + hsu. 

However, by (3.1), 

Vh(XP) = Vh(XP 1) + hsu > (Su - SL)h/2 

or equivalently, after some elementary algebra, 

IVh(XP_1) + hsul = vh(xP 1) + hsu > -Vh(XP-1) - hsL 

Since SL < SU we also have that 

lVh(XP1) + hsul = Vh(XP 1) + hsU > Vh(XP 1) + hsL. 

Thus, the previous two inequalities imply that 

IVh(XP-1) + hsul > IVh(XP 1) + hsLI 

This contradicts the definition of vh (x) . The proof that 

-vh(x) < (Su - SL)h/2 for x E I 

is similar. Thus, we have shown that 

(3.2) Ivh(x)I < (Su - sL)h/2 for x E I. 

Hence, it follows that 

Eh ? e~'(Vh) ? max|vh2 2 (SU SL)2h O 

We next prove Lemma 2 which gives a pointwise estimate of the oscillation 
of u (x) about SL and su. 

Proof ofLemma 2. Since u' (x) is piecewise constant on the finite element mesh 
of length scale h, it follows from (2.1) and Lemma 1 that 

A min{ (u' (x) 
- sL2, (u(X) - SU)2 }h < 0(u (x))h <(SU 

- sL)h 

for x E I. The result (2.4) follows directly from the above estimate. 0 
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The next lemma gives an L2 estimate of the oscillation of u' (x) about SL 

and Su . It will be useful to have the projection. operator I:IR - {SL, SO} 
defined by 

Ils= SL for s < (sL + su)/2, tSu for s>(sL +Su) 12 
Note that 

Is - Vlsi = min{(s - SL)2, (S - Su)2' 

so by (2.1) 

(3.3) q(S) > AI IS- sI2. 

Lemma 3. We have the estimate 
[1 ~~~2 <(Su 

- SL) h 
(3.4) J IUh(X)l-lUh(X)I dx < 4L 

Proof. The estimate follows easily from (2.1) and Lemma 1, since they imply 
that 

iI f I x)fu()2dxE?(Su - SL)2h 
u1 | lh(X) - M(X) I dx < Ehh hU 4 

Lemma 4. We have the bound 

max Iuh (x) I <max {mraxlu (x)l, su ISLI }h 

Proof. Set 

v = max {max lu(x)I, Su ISLI}. 

We assume that 

(3.5) max Iuh (x) I> vh 
XEI 

and we shall show that this leads to a contradiction by constructing Uh (x) e Ah 

such that 
?(^h) < F(Uh)- 

By (3.5), there exists p such that Iuh(xp)l > Iuh(xl)I for 1 = 0, ... , M and 
Iuh(xP)I > vh. First, we show that x 0 O and xp 0 1. If uh(O) > v h, then 
we construct U&h(x) E 9h by 

h ) u(xI) - sUh for k = 0, 
Uh'(Xk) 1= (Xk) for k = 1, ..., M. 

Now uh(x1) > 0 since uh(O) > vh and since lu'(x)l < v for x E I,. Also, 

&h (O) = uh (x1 )-suh > -i'h, so h (X) I < uh (x) for x E I1 . Further, i' (x)= 
Su for x E II and u^h(x) = uh(x) for x E (xI, 1) . Thus, we have that 

Si(ih) < 8(Uh )t 

Similar arguments for the other cases show that xp 0 O and xp 0 1 . 
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We may now assume that p is chosen so that 0 < xp < 1, that Iuh(xP)I > uh, 
and that Iuh(xp)l > lUh(Xp 1)1 and luh(xp)l > Iuh(xPp+1)I In this case, we 
construct Uh (X) E Ah by 

{ Uh(Xp_1)+Uh(Xp+1)-Uh(Xp) fork=p, 
uh xk)- Uh(Xk) fork=O, ...,p-1,p+ 1,..., M. 

Then i^' (x) = ut(x+h) for x E Ip , U'(x) = (x-h) for x E Ip+I, Ih (x) < 
IUh(X)I for x E Ip U Ip+ a (x) Iu(x) for x E (0, xp1) U (x 1). 
Hence, we have that 

?(^h) < F(Uh)' 

Thus, we have proved the lemma by contradiction. 5 

Next, we give an estimate for the convergence of uh(x) to 0. It is shown in 
?5 that this rate of convergence is optimal. 

Lemma 5. If h < 4A1, then 

(3.6) max Iuh(x)l < 2(s5 - SL)h. 

Proof. It follows from Lemma 2 that if h < 4L I, then 

max lu(x))I < 2(s - SL) 
XEIh 

) 

The result (3.6) now follows from Lemma 4. o 

Proof of Theorem 1. We estimate the error as follows: 

[F(x , u'(x))+F(x- ( ), )- y)F(x, su)]1dx 

< [j1 [F(x, u dF(x] IuM ((x)) ]]dx 

+ ||[F (x , HIu'(x)) -yF (x, s ) y)F(x, Su)] dx 

Then we have by Lemma 3 and the Cauchy-Schwarz inequality that 

al<l tFx I u' g(x) - Mlu (x) I dx 
? ~~~~L" (,, ) 

|as (X,) l |h(X - h/(X)l2 
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Let G(x) = F(x, sL) - F(x, sU). If lU' (X) = SL, then 

(3.7) F(x, rIuJ(x)) - yF(x, sL) -(1-y)F(x su) =(1 - y)G(x) 

and if Hlu (x) = su, then 

(3.8) F(x, Ilu'(x)) - yF(x, sL) -(1 - y)F(x su) = -yG(x). 

Note that by (2.5) (where s = 0 ), 

HUJh(x) y- 1 if Hlu,(x)= SL, 

SU SL Y if Iluh(x) = Su 

Thus, it follows from (3.7) and (3.8) that 

F(x, HIu (x)) - yF(x, SL) -(1-y)F(x, su) = h G(x) 
- SL 

for x E I. 

Hence, we can estimate J2 by 

> - ||ht )G(x) dx| 

<uS J (H~uh(x )-u (x ) )G(x )dx |+ | uh (x )G(x )dx| S 5 >3+ 4 

U L 

Now by Lemma 3 and the Cauchy-Schwarz inequality we have that 

> = j|f[U (X) - H (X)]G(x)dx 

(3.10) <{j[u'(x - f)uI(x)]2dx} {j G2(x) dx} 

< (Su - 
sL)h IFIly 

since 

{f G (x) dx} < IGH1L(I) a xG(O) j + -G(x) dx < JIF~ly 
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Next, use integration by parts on J4 and Lemma 5 to obtain that 

14= Uh(1)G(l)-Uh(O)G(O) Uh (X) G(x) dx 

< maxlUh(X)l [G()I + IG(O) + I G'(x) Idx] 

? max ju h(x) [21 G(O) I + 2 G'(X) I dx] 

? 4(su - SL)hjjFjy. 

Combining these results, we obtain that 

f [F(x, u (X)) - yF(x, SL) - (1 - y)F(x, Su)]dx 

< [(s57-S) + /2 +4] FIFIlyh. 0 

4. THE DIRICHLET PROBLEM 
In this section we consider the numerical approximation of the Dirichlet 

problem to compute Uh E Ah n 7f satisfying 

(4.1) F'(Uh) = min ?(Vh). 
Vh EA7-fho 

We further assume that there exist )2 and Z > 0 such that 

rj 2 
(4.2) (S) < 21S -Is for s E A. 
We can now prove the following variant of Lemma 1 for the Dirichlet problem. 

Lemma 6. For h < 2zy/(su - SL), we have that 

min (vh)< (< 
2 ) 3 (su 

- SL) h 
Vh EA7Wno 

Proof. We define Wh E fh n 7 by 

Wh(X) = Vh(X) - Vh(l)X 

where Vh (X) E Ah is the function defined in the proof of Lemma 1. Now by 
(3.2), 

f Wh(X) dx < 21 [vh(X) + (Vh(X) - Wh(X)) ]dx 

222 
< (su - SL)h. 

Further, since w (x) E A- for x E I, we have that 

q(w (X)) < 2 vh (l) 4 SL)h x e I. 
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Thus, 

min F(vh) < (i2 + (5 _ 5 h 
vh EJfhnW- 4 ,(~- Lh 

Lemmas 2-5 and Theorems 1-2 for the Dirichlet problem can now be proven 
by the identical arguments used for problem (2.3). (The constants in these 
results must be changed to reflect the different constants in the bounds for the 
energy in Lemma 1 and Lemma 6.) 

Finally, we note that the results of Lemmas 2-5 and Theorems 1-2 can be 
extended to the Dirichlet problem when the minimal energies attained in the 
wells of 0(s) are not equal. More specifically, we can allow the energy density 
0(s) to have the property that /(s) = 0(s) + I(s) satisfies (2.1) where i(s) is 
an affine function. To see this, note that if 

t~v) | [(V'(y)) + (v (y) _ f(y))2]d 

then for v E X, 

(v= (v) + l(v(1) - v(O)) = F(v) + l(f(l) - f(O)). 

Thus, Uh e n 7 satisfies 

F'(Uh) = mmn -F(vh) 
Vh EJh no f 

if and only if Uh E 1h n 7 satisfies 

(4.3) F'(Uh) = mmine(Vh). 
VhEJ nfl f ah EAsh 

The analyses of Lemmas 1-5 and Theorems 1-2 can now be applied directly to 
problem (4.3). 

5. OPTIMALITY OF THE MAIN RESULTS 

We next discuss the optimality of our results for problem (2.3). First, we set 

a=min -, 2 }U>?0 

It then follows from Lemma 2 that for h < 42AL /(SU - SL)2 we have that 

lu (x)? > a for x E I. 

Hence, since u' (x) is linear on each interval Ii, we have for i = 1, ..., M 
that 

(5.1) max Juh(x)l > &h/2 for x E I, 
xEI, 

and 

(5.2) U h(X)2 dx > &2h3/12. 
I; 
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Thus, from (5.2) we see that 

(5.3) k uh(x)2dx > & h /12 

and hence, that 

(5.4) Eh >& h /12. 
The estimate (5.4) shows the optimality of the order of the error bound for Eh 
given in Lemma 1 and the estimate (5.1) shows the optimality of the order of 
the error bound for uh (x) given in Lemma 5. Bounds similar to the above 
bounds are also clearly valid for the Dirichlet problem (4.1) . 

To demonstrate the optimality of the bounds given in Theorem 1 and Theo- 
rem 2, we consider the example 

(5.5) 0(S) = (s 1)2(s + 1)2 
for problem (2.3) In this case, SL = -1, su = 1, and y = 1/2. For this 
example, we can calculate analytically the displacement, uh (x), at which the 
minimum of the energy F is attained to be 

(5.6) Uh(Xi) = (-1) I - 2)1 for i = 0, ..., M. 

(The minimum energy is also attained at -uh((x), of course.) We also have that 

(5.7) Uh(X) = (-1) (I - 24) for x e Ii 

and 

(5.8) (Uh) 12 ( -48 

To see this, note that the minimum of 

?i(Vh)=j [q(v (y)) +V(y) ]dy for vh ash 

is attained at Uh E Zh such that 

Uh(Xi-1) 2 24 (_ ) , Uh(Xd) =F i-(1_4 

with minimum energy 
h3 

i("d) 12 (1 48) 

Hence, we see that the order of the bounds in Lemma 2 and Lemma 3 are not 
optimal for this example and that 

( h 2 

(5.9) U, I(X) - fu*( dx <4 
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However, by asymptotic methods (nonrigorous) we have found that the order 
of the estimate in Lemma 3 is optimal for the Dirichlet problem. We have 
further found for the Dirichlet problem that in general the pointwise result 
U/(x) - Hu (x) = 0(h) holds. 

A review of the proof of Theorem 1 shows for the energy density (5.5) and 
problem (2.3) that 

Jj ? filh2/24 and >Y ? 32h2/24. 

Thus, 

j [F(x, u4(x)) - yF(x, SL) -(1 - y)F(x, su)] dx 

(5.10) - L[24 + 24(sU - sL) J 

+ 1 Uh(l)G(l) - Uh(O)G(O) - h (x))G (x) dx 
Su- SL 

Now 

(5.11) Uh(x)G (x) dx j Uh(x)(G (x) - GG(x)) dx, 

where G'(x) is the piecewise constant function which takes the average value 
of G'(x) on each interval Ii, defined by 

G (x) = G (y) dy for x E I, 

since 

uh(x) dx =0 fori=1,...,M. 

Further, 

Uh(X) (G'(x) - G'(x)) dx 

0~~~~~~~~~~~~~~~~~ 
< max luh(x) f IG'(x) - G'(x)I dx 

(5.12) 
<max uh(x)lh IG (x) Idx xEI 
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Hence, by using the estimates (5.10) and (5.12) we obtain 

/ [F(x, u (X))-yF(x, SL)-(1 -y)F(x Su)] dx 

>- [24 + 24(su - SL)+ 2(su SL) -24 
1 G (x) dx h 

1 
+ 1 uh(l)G(l) - Uh(O)G(0) . 

SU- SL 

Thus, for G(O) = 1 and G(1) = (-1)M V 
, we have 

(5.13) Juh(l)G(l)- Uh(O)G(O)| = 21uh(0)I = h (I -2) 

So, we finally obtain the estimate 

f [F(x, u (X))-yF(x, SL)-(1-y)F(x, Su)] dx 

h (X)2(s-sL) 241 

(5.4) >- [24+ 24(su -SL) + L) - 24 
I G (x) dx h 

h (h2' 1/2 
+ 1 - 2h4 

- SL 

The above estimate shows that the order of the error bound in Theorem 1 (and, 
therefore, Theorem 2) is optimal. 

We note that if F(x, s) is independent of x, i.e., F(x, s) = F(s), then 
G(1) G(O). Now if M is even, we have that uh(O) = uh(l), so 

Uh(l)G(l) - Uh(O)G(O) = 0 

and 

j [F(x, u'(x)) - yF(x, sL) -(1 - y)F(x, Su)] dx 

24 +24(su -SL) +2(su S2) 2 1 G/ (x)Idx] h2 

Hence, for this example we obtain a higher-order error estimate for Theorem 
1 when F(x, s) is independent of x and M is even. When M is odd and 
F(x, s) is independent of x, we have that uh(O) = -uh(l), and (5.13) and 
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(5.14) are valid. So, when M is odd and F(x, s) is independent of x, Theo- 
rem 1 gives the optimal-order error estimate. 
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